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Abstract 

The 'phase problem' is cast in terms of information 
theory. Constrained maximum-entropy inference is 
used to obtain the statistical structure of the largest 
possible set of electron density functions compatible 
with conditions that underlie the derivation of the 
Sayre-Hughes equation. As a consequence, the infor- 
mation provided by the knowledge of some structure 
factors is quantitatively expressed. The most unbiased 
prediction for the phases of structure factors whose 
moduli are known leads to the statement of the 
'minimum added information rule' which corresponds 
with Tsoucaris's 'maximum determinant rule' 
[Tsoucaris (1970). Acta Cryst. A26, 492-499]. Expan- 
sion of the information in multiplets followed by the 
application of the proposed rule leads to the current 
formulae of direct methods. The information content of 
these formulae is discussed, and its dependence upon 
the magnitude of the structure factors and a priori 
structural knowledge is emphasized. 

1. Introduction 

The purpose of this paper is to present a derivation of 
the current formulation of direct methods using 
information theory as a conceptual framework. As a 
consequence of this approach, we will give a measure of 
the information in the phase determination procedure. 

Information theory, initiated mainly by the work of 
C. E. Shannon (Shannon & Weaver, 1949), is based on 
statistical mathematics. Though it was initially de- 
veloped to be used in problems of communication, its 
concepts and methods have been applied to other areas 
of science (BriUouin, 1962). Among the previous 
applications of information theory to crystallography 
we should mention the work by Diamond (1963) who 
introduced a measure (in 'bits') of the information 
contained in inequality of Karle-Hauptman determi- 
nants. Hosoya & Tokonami (1967) considered the 
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estimation of the conformational entropy of an essen- 
tially one-dimensional real structure and the removal of 
structural uncertainty during crystal structure de- 
termination by the information contained in the 
reflection intensities and in the Patterson peaks, de 
Rango, Tsoucaris & Zelwer (1974) stressed the relation 
between the efficiency of the probability laws for phase 
determination and information theory. 

Shannon's work established clearly the connection 
between information and entropy. This connection 
leads to the guiding principle that the probability 
distribution of a set of physical magnitudes related to a 
system that is not amenable to a complete experi- 
mental determination and that has maximum entropy 
subject to whatever is known provides the most 
unbiased representation of the system. 

The principle referred to above has been used 
previously as a statistical method for prediction of 
phases of structure factors in crystallography (Piro & 
Podjarny, 1978, 1979). By applying the constrained 
maximum-entropy procedure they obtained a quanti- 
tative expression for the information added by a set of 
structure factors. When the moduli of these structure 
factors are experimentally known, the most unbiased 
estimation of the phases leads to the 'minimum added 
information rule' with respect to which Tsoucaris's 
'maximum determinant rule' is a particular case (Piro, 
1977; Piro & Podjarny, 1978, 1979). The expansion of 
the information in multiplets, in conjunction with the 
application of the minimum added information rule, 
allows several existing phase-determination procedures 
to be obtained from the viewpoint of information 
theory. 

In the present work we derive the information 
content of some invariants and quantitate the gain in 
information due to both a priori structural knowledge 
and the experimental knowledge of the signs of some 
triplet products. 

2. Multivariate joint probability distribution of nor- 
malized structure factors 

We want to investigate the statistical structure of the 
continuous electron-density functions pE(r) having the 
continuous argument r, using the simpler multivariate 
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joint probability distribution of a discrete number m of 
continuous structure factors: 

P(ghi, Eh: . . . ,  E~,) = P(E), 

where E is a column vector whose components are the 
m structure factors. 

For simplicity we shall assume that all atoms are 
identical and therefore the elements of E are given by 

1 N 
Eh= "~ ~ exp (2rtfla. r~); (2.1) 

h: reciprocal-lattice vector, rj: vector of coordinates of 
thejth atom, N: number of atoms in the unit cell. 

The unitary structure factors are given by 

Vh---- Eh/VfN.. (2.2) 

P(E) satisfies the normalization condition 

oo 

: . . .  : P(E,,,  E O aE,  . . .  
- - O O  

- - f P ( E )  d m E = l t .  (2.3) 

The entropy or lack of information associated with 
such distribution is (Shannon & Weaver, 1949): 

H = --f P(E) In P(E) d m E = - ( I n  P). (2.4) 

The distribution function P(E) corresponding to the 
maximum lack of information and compatible with 
such a priori structural knowledge as positivity and 
atomicity of the electron-density function, expressed in 
reciprocal space by the Sayre-Hughes equation (Sayre, 
1952; Hughes, 1953): 

(E~ E'~,) = Uhj_b,, (2.5) 

can be found by a mathematical technique usual in 
dealing with analogous problems that arise in com- 
munication, i.e. using Lagrange multipliers (Shannon & 
Weaver, 1949): 

- - f / - l n  P ( E ) -  1 + a 

p 

-- ~ fit/E~ Eh,] JP  d n E -- 0. (2.6) 
1, j= 1 ) 

~" In P1 the notation P(Eh,, .... Eh),  where the E's  are complex 
variables (E h = Ah + iBh), in fact represents the joint probability 
function P(A h,, Bh,, .... A h., B~)  for the real and imaginary parts of 
the m normalized structure factors. Consequently dE h = dAudB h 
for the differential elements in the integrations. 

Since (2.6) must hold for every variation JP of the 
conditional distribution function, the latter should be of 
the form: 

( ~ floE~E~). (2.7) P(E) = exp (a -- 1) exp --t,1=l 

From the constraint (2.5), we can deduce the value of 
the I] matrix {(I])o = flu}: 

½U 1 centriccase (Pi)  

~1 = U -1 acentric case (P1), 
(2.8) 

where (U)o. = Ub,_h~ is a Karle-Hauptman matrix (see 
Appendix). 

From the normalization condition (2.3), we find for 
P(E) in the two cases: 

f [de t (U-0]  v2 - r 1 
J - - - ~ ~  exp (--½E U- E) (P[  case) 

P(E) = L d e t  (U-0  
• ~ e x p ( - E  + U -1E) (P1 case), (2.9) 

where the row vectors E r and E + are, respectively, the 
transposed and conjugated transposed of the column 
vector E. 

The expression (2.9) for the conditional joint 
probability distribution of m normalized structure 
factors was deduced by Tsoucaris (1970) using 
statistical arguments based on the central limit 
theorem. 

From the standpoint of information theory, we can 
express the above result saying that, from all possible 
distributions P(E) compatible with the crystallographic 
constraints (2.5), the Laplace-Gauss distribution corre- 
sponds to the largest set of different possible elec- 
tron-density functions. Therefore, the knowledge of the 
correct function removes the largest possible lack of 
information. 

It is worth while to note that the mathematical 
procedure followed above to obtain the distribution 
function P(E) given by (2.9) is a general one. If other 
constraints in addition to (2.5) can be expressed in 
reciprocal space, then additional Lagrange multipliers 
can be used to find the new distribution function which 
produces the constrained maximum entropy. 

3. Information. Rule of  the minimum information 

Let us take the P1 case in (2.9): 

P(E) = C exp (--E + U-' E), (3.1) 

where C is a constant independent of the structure 
factors (Eh,, Eh: ..., Eh). If we lack information about 
the m structure factors, then the average uncertainty 
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removed when we consider the whole set of Pc(r) 
functions whose statistical structure is given by (2.9) is 

H b = - ( I n  P ) = - I n  C + (E + 0 -2 E) 

= --In C + m, (3.2) 
while the actual value for the entropy removed when we 
have complete knowledge about E (in modulus and 
phase) is 

H a = - I n  P = - In  C + E + U -l  E. (3.3) 

Therefore, it is reasonable to associate the information 
gained by such knowledge to the positive definite 
quantity: 

Information = E + U -1 E. (3.4a) 

Analogously, we obtain for the centrosymmetrical 
case: 

Information = ½E r U -~ E. (3.4b) 

The origin of the factor ½ in (3.4b) can be traced to the 
fact that by considering the centrosymmetric crystal as 
a special case belonging to the P1 space group, the 
corresponding information content carried by the E's  
and given by (3.4a) is twice as much as the true 
information because only half of the features exhibited 
by the associated E map are independent in PL  

According to (3.4) the most unbiased prediction for 
the phases (signs) of the m structure factors whose 
moduli are known leads to the following rule: 'the most 
probable phases (signs) are those that minimize the 
information'. 

It has been shown that (Tsoucaris, 1970): 

E + U -1 E -'- N , (3.5) 
Dm 

where Din[ = det (U)] and Am+ ~ are Karle-Hauptman 
determinants. Am+ 1 is ( I /N)  times the determinant 
obtained from D m adding as a last row the m- 
dimensional row vector E + and as a last column the 
corresponding column vector E, while the (m + 1, 
m + 1) determinant element is set equal to N. 

From (3.4) and (3.5) it can be seen that our rule of 
minimum added information leads to the Tsoucaris 
'maximum determinant rule' (Tsoucaris, 1970; Piro, 
1977; Piro & Podjarny, 1978, 1979). 

63 

U - 1 =  I -  U' + U ' 2 -  U '3 + . . . ,  (4.2) 

the equations (3.4) for the information give rise to a 
multiplet expansion: 

Information = E + I E -  E + U' E + E + U '2 E 

- - E  + U ' 3 E + . . .  

= Z [Eh, 1 2 -  Z Z EI~ Vht- ~ Ehj 
hi hl~hj 

+ yTTE  Vh,_h, U _ Eh -- . . . .  

h,~h:h, 
ht~h, 

(4.3) 
Some conclusions can be drawn from (4.3): 
(i) We can recognize the leading term as a 'Wilson- 

type' term. This term, in general, will be the largest in 
the expansion, thus emphasizing the greater infor- 
mation content of the large E's  as compared with the 
information provided by the small E's. On the other 
hand, this term will be the only one in the expansion if 
we set to zero all correlations between different 
structure factors in (2.5). The resultant multivariate 
joint distribution corresponds to contributing 'white 
noise' to the electron density due to the m new added 
structure factors. 

(ii) The next term is the first one in the expansion 
containing phase information. The rule of minimum 
added information leads to the fact that the most 
probable phase of a single large triplet product should 
be zero (modulo 270. If it is different from zero, some 
peculiarity in the structure produces this unexpected 
behavior and the corresponding information will 
increase. We will discuss the quantification of this fact 
in the next section and a numerical example taken from 
a real case will be given in § 7. 

On the other hand, if we apply the rule to the sum of 
all the triplet products, then the tangent formula (Karle 
& Karle, 1966) is obtained. To prove this, let us express 
the information as given by its first two terms in real 
form: 

I =  ~ IEh 12 --  ~. ~. IE h Uh_kEkl COS (~h-k -I- ~ k -  ~h)- 
h h~k 

(4.4) 

Let us segregate the contribution to the information 
(4.4) containing a given phase tab: 

4. Expansion of the information in multiplets. Infor- 
mation content of some invartants 

Let us separate the Karle-Hauptman matrix U into two 
terms: 

U = I + U', (4.1) 

where I is the unit matrix. Expanding U -1 in powers of 
UP: 

I =  y [Eh 12- 2[Eh[ 
h 

x cos (Oh ~ I Uh_ k Ekl COS (~Ph- k + ~0k) 
k~h 

-- 21Ehl sin (ah ~. IUh_kEklSin (~lh_k + (fl0 
k:#h 

-- ~.. ~. ]f h, Uh,_kE k ] COS (fflh'-k + (#k -- f~'). 
h' ~h~k 

h'~k (4.5) 
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The condition of minimum added information is 
obtained when OI/O~O h = 0, which applied to (4.5) leads 
to: 

Y. I Uh_k Ekl sin ( ~ - k  + ~) 
k~h 

tan q~ = . (4.6) 

I U h - k E k  I COS ((~h-k "1- (~k) 
k:~k 

(iii) Let us consider the information approximately 
expressed by the first three terms of (4.3). The rule of 
minimum added information will tend to predict the 
phase of a large quartet E~, Uh,-hj Uh.-hkEh, to be (a) in 
the neighborhood of zero if the modt{lus of one or more 
of the 'cross terms' IEh, I, IEh g +~1, IEb,_h~l is large, or 
(b) in the neighborhood of 7~'~all * of these cross terms 
are small. To prove this, let us consider a large quartet 
as proportional to the product of two triplet products, 
e.g. 

(E~t Uh,_hl Ehj ) (E~ Uhl_hk EI~ ). 
If the phase of the large quartet is assumed to be ~ it is 
likely that larger negative terms will contribute to the 
second summation of (4.3), especially so for large cross 
terms (like E~.) Thus for large cross terms we expect 
the quartet phase to be in the neighborhood of zero. 
However, if the cross terms are small no such effect 
occurs and therefore the third summation in (4.3) 
predicts the phase of the quartet to be n. These 
conclusions are in close agreement with the findings of 
Schenk (1973, 1974) and Hauptman (1974) relative to 
the distribution and use of phase relationships among 
quartets of reflections. 

A derivation similar to that given in (ii), but now 
considering the information in third-order approxi- 
mation, leads to a 'generalized tangent formula': 

tan ~ =  l ~  IUh_kEkl sin (~-k + ~) 
tk~ h 

k~l 
- T Y~ IU._k U._,E,I 

k~h~l 

x sin ((~h-k "q- (~k-I "+" ~01) / 
J 

[ ~  IUh_kEkl COS (~_k + ~ )  X 
[k~h 

--  Z Z [Uh-k mk-I El I 
k:c:h~l 

k~l 
)] -' 

X COS (~Oh_ k "1- (~k-I "4- ~0 I , (4.7) 

which incorporates in a consistent way phase re- 
lationships simultaneously involving triplet and quartet 
products. 

5. Expected information to the second order of 
approximation (aeentrle ease) 

We saw in § 3 that when we lack any knowledge about 
the m structure factors [except for their correlations 
(2.5) which form the assumed known covariance 
matrix O], the expected information is: 

(I> = <E+ U-' E> = m. (5.1) 

It is interesting to calculate, in a second-order ap- 
proximation, the expected information when we know 
experimentally the moduli of the structure factors. 

In order to average (4.4), the following relation must 
be taken into account: 

I,(Khk) 
<COS (~,,-k + ~ -  ~,)> - ~ ,  (5.2) 

10(K..) 
where Io, I, are the zero- and first-order modified Bessel 
functions: 

Khk = 203 a{3/21EhEh_k Ekl, 
N 

a.=Y:;, 
J= I 

andfj is the form factor of thejth atom (Germain, Main 
& Woolfson, 1970). Introducing (5.2) into (4.4), we 
obtain 

I,(I¢~k) 
(I> = ~ IEhl 2 -  Y Y IEh Uh_k Ekl ~ .  (5.3) 

h h,k Io(KhO 

The average (5.2) could be deduced using the fact 
that the phase distribution of a triplet product X = 
f_h fh_k Ek (assuming known moduli for the factors) is 
avon Mises distribution (von Mises, 1918): 

exp [K{,k cos (~k - -  qhk)] 
P(qThk ) = , (5.4) 2~I0(/q,k) 

where 

K~,k exp (iqhk) = 2Qhk I Eh Eh-k Eklexp (iqhk) 
2<x> i x l  

- (5.5) 
o2(X) 

In the case of atoms randomly positioned, 
2QhalEhEh_kEkl exp (iqhk) reduces to the real quantity: 

203 O{3/21Eh Eh_k Ekl (qhk = 0) (5.6) 

(Hendrickson & Lattman, 1970; Koenig, 1972, 1976; 
Heinerman, Krabbendam & Kroon, 1977). 

Recently a priori structural information has been 
used in the phase probability distribution of triplet 
products and in the modification of the tangent formula 
(Main, 1976; Heinerman, 1977; Heinerman, Krabben- 
dam & Kroon, 1977). The corresponding expected 
information under the condition of previous knowledge 
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of the diffraction intensities and of structural features is 
calculated as has been done before, but now, in general, 
qhk =# O: 

1 '~ 
(cos tpu,) = 2xlo(K:,k) _f exp [KI~ k COS (~)hk -- qhlc)] 

X COS tPhk d ~ k  

I,(K~O 
-- - -  COS qhk, (5.7) 

Io(K~k) 
and 

I,(K~k) 
( I ) - -  Z IEh 12-  Z Z IEh Uh-k Ekl ~ cos qhk. 

h h*k Io(K~k) 
(5.8) 

From (5.3) and (5.8), we obtain the following 
expression for the gain in information due to a priori 
structural knowledge: 

Gain - ~ ~ IE h Uh_ k Ekl 
h~k 

/l(Khk) 
x Io(Km,) 

II(Khk) ) 
- -  COS qm, • (5.9) 
Io(K~k) 

6. Expected information to the second order of 
approximation (centric ease) 

In the centric case, the information is given by 

I =  ½Er LI-z E, (6.1) 

and to the second order of approximation by 

l = ½{~h E2-- ~ ~'h~k [Eh Uh-k Ekl S(hk)} ' (6.2) 

where s(hk) is the sign of the triplet product E h Uh_k Ek. 
Averaging (6.2) and remembering that 

(s(hk))  = P ( + ) -  P ( - ) ,  (6.3) 

where, for randomly positioned atoms (Cochran & 
Woolfson, 1955), 

P(__) = ½ + ½ tanh (N-V21EhEh_k Ekl), (6.4) 

we obtain 

½[~ht E2 -- Z Z [Eh Uh-k Ek[ I =  
h~k "t 

x tanh (N-1/2lEhEh_kEk[)}. (6.5) 

Let us consider the contribution to (6.2) and (6.5) 
due to an individual triplet product. If it is large and at 
the same time positive, as expected, its contribution to 

the information takes its minimum value, and therefore 
it does not tell us anything new. If it is large and 
negative, we can see from (6.2) that it adds an 
information larger than expected; there must be some 
structural peculiarity that produces such unexpected 
behavior.* 

Recently, experimental measurement of the signs of 
large triplet products, based on the analysis of the 
distribution of the diffraction intensities about the 
three-beam point in a three-beam simultaneous diffrac- 
tion experiment, have been successful on highly perfect 
germanium and relatively imperfect aluminum oxide 
crystals (Post, 1979). Although it is not yet possible to 
predict the utility of the technique applied to the 
'mosaic '  crystals usually found in crystal structure 
analysis, we can see, according to our previous 
discussion, the importance that the experimental 
knowledge of the negativity of some triplet products 
has in direct-methods calculations. We can easily 
measure the gain of information due to the ex- 
perimental knowledge of negative triplets. From (6.2) 
and (6.5) we obtain: 

Gain exp = ½ ~.' ~..' IEh Uh_ k Ekl 
h:~k 

x {1 + tanh (N-U21EhEh_kEkl)}, (6.6) 

where the sum is performed on the experimentally 
detected negative triplet products. 

7. A simple case 

In order to check quantitatively some aspects of the 
information-theory approach to the 'phase problem' 
developed in the previous sections, calculation of the 
information content of single triplet products in a 
specific case were performed. The test example taken 
was the centrosymmetric (010) projection of the crystal 
structure of 1,4-cyclohexanedione (C6HaO2) at 133 K 
(Mossel & P, omers, 1964). In this structure (space 
group P21) the  molecules are stacked along b with their 
mean plane approximately parallel to the (010) plane as 
revealed by the Patterson projection along [010] 
calculated by the authors and which provided the 
knowledge of the rough molecular orientation. The 
particular orientation of the molecules in the crystal 
makes this compound interesting to analyze because its 
deviation from a random atom distribution should 
reflect itself markedly on the a priori expected 
information of single triplet products. 

* This is a case similar to the information content of the outcomes 
during the throw of an uneven coin: p(head) >> q(tail), p + q = 1. 
The information provided by the result 'head' is small: I h = -In p 
(p ~ 1). On the other hand, the information provided by the 
infrequent result 'tail' is much larger: I t = -In q (q ~ 0). The average 
information provided by both results is (I) = -p  In p - q In q and 
I t > (I) > I h. In the crystallographic case, we have /(negative 
triplet) > (I)  >/(positive triplet). 
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For single triplets, the information (3.4b) reduces to 

1 
I= {E~ + Ek 2 -- 21Eh Uh_kEk I s(hk)}, 

2(1 - U~_O 
(7.1) 

which takes the second-order approximation form (6.2) 
if we neglect UhZk in comparison with 1 in (7.1). 

Next we shall consider the expected information (I> 
in the following four cases: 

(i) We lack any information about the structure 
factors Eh and Ek but we know their correlation 
(EhEk> = Uh_k. Then, the expression analogous to 
(5.1) for P [  is in this case 

<I> = ½m = 1. (7.2) 

(ii) We have experimental information about the 
moduli IEhl and IEkl. Then the average of (7.1), 
assuming random atom distribution, gives 

1 

2(1 -- U~h_k) 

X tanh IEh Uh_kEkl/(l -- U~,_O}, (7.3) 

where the relation 

lfh Uh_k fk I 
(s(hk)> = tanh , (7.4) 

1 -- U~h_k 

has been used (Tsoucaris, 1970). 
(iii) We know IEhl and IEkl from diffraction data 

and we also have structural information about the 
rough orientation of the molecule in the cell (obtained, 
for this crystal, from the inspection of the Patterson 
map). The averaging of (7.1) constrained by this 
additional condition gives 

1 
<I> = {E~ + E k -- 2IE h Uh_k Ekl 

2(1 - Uh2_k) 

× tanh [~N21Eh Uh_kEkl ( ~  + l/N2)]}, (7.5) 

where ~ ,  is defined by Kroon & Krabbendam (1970) 
and depends only on the interatomic vectors for the 
known molecular orientation. 

(iv) The same as (iii) but now the refined molecular 
orientation is known. 

The results of the calculations for the 22 large triplet 
products of low order reported by Kroon & Krabben- 
dam (1970) are in Table 1, where the triplets have been 
numbered according to the order in which they appear 
in this reference. For the purpose of comparison, the 
table includes the real value [(7.1)] and the minimum 
value [(7.1) with s(hk) = 1] for the information content 
of the single triplet products. 

From an inspection of Table 1, we can conclude the 
following. 

(i) The real value for the information carried by a 
few triplet products is smaller than the expected value 

Table 1. Information content for large triplet products 
of low order in 1,4-cyclohexanedione 

Negative triplets 
Triplet Real I Minimum I (I)r.,," (I> .... (I> .... 

3 2"64 1"78 2"04 2"48 2"39 
4 0"97 0"71 0"82 0"81 0"86 
9 0"65 0"40 0"50 0"50 0"55 

11 1'10 0"72 0"87 0"95 0"95 
17 1'45 1"02 1"19 1"22 1"26 
18 1"81 1"38 1"55 1"53 1"56 
20 1"04 0"66 0'81 0"95 0"91 
21 2"46 1"28 1"56 2"43 2-45 
22 1"50 0"70 0"94 1"22 1"23 

Average 1.51 0.96 1.14 1.34 1.35 

Positive triplets 

1 1.96 1.96 2.14 1.99 1.96 
2 1.84 1.84 2.03 2.05 2.04 
5 1.23 1.23 1.47 1.23 1.25 
6 0.71 0.71 0.82 0.83 0.84 
7 0.74 0.74 0.90 0.90 0.88 

10 0.68 0.68 0.90 1.02 0.78 
12 0.99 0.99 1.16 1.20 1.19 
13 1.93 1.93 2.19 1.93 1.94 
14 1.05 1.05 1.19 1.19 1.17 
15 3.99 3.99 4.05 3.99 3.99 
16 1.72 1.72 2.02 1.72 1.75 
19 0.79 0.79 0.94 0.95 0.95 

Average 1.47 1.47 1.65 1.58 1.56 

(I),.a.: expected information obtained from equation (7.3); 
(I>,.o.: expected information obtained from equation (7.5) with 

rough orientation; 
(I>c.o.: expected information obtained from equation (7.5) with 

correct orientation. 
The triplet 8 has been omitted because it was clearly in error in the 
reference cited in the text. 

in the case of complete ignorance about the structure 
factors Eh and Ek. This fact correlates with triplets 
E_hEh_kEk of small modulus and emphasizes the 
advantage of working with large triplet products of 
higher information content. 

(ii) The inequalities (I)r,c)o > (I)r.a. for negative 
triplets and (I)rto.o" < ~I>~.a" for positive triplet 
products reflect the fact that the introduction of a priori 
structural knowledge improves sign prediction (Kroon 
& Krabbendam, 1970). When the molecular orienta- 
tion is taken into account, the probability of a minus 
sign for the triplet products in the first group of Table 1 
increases (together with the associated expected infor- 
mation) with respect to the values that are obtained by 
assuming a random atom distribution. The reverse 
effect occurs with the triplet products in the second 
group of Table 1. 

(iii) When we increase our structural knowledge 
starting with the random atom distribution hypothesis 
(from left to right along the last three columne of Table 
1), the expected information, in general, gets closer to 
the real value. 
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8. Concluding remarks 

The potentiality of information theory with regard to 
the derivation of the distribution function P(E) of 
several structure factors compatible with constraints 
that embody a priori structural knowledge is shown in 
§ 2. Once the distribution function P(E) is found and 
the moduli of the components of E are experimentally 
determined, subsequent phase prediction based on the 
minimum added information E + U-' E [or, to some 
degree of approximation, of its expansion (3.4)] can 
equally well be obtained with the equivalent condition 
of maximum P(E). However, the information-theory 
approach offers some potentially useful insights for 
crystal structure analysis, derived from appropriate 
quantitation of the information provided by diffraction 
data and available stereochemical knowledge: 

(i) A crystal structure may be regarded as a 
particular atomic arrangement pertaining to a set of 
many possible configurations. Therefore, a conforma- 
tional entropy might be defined for such a crystal 
(Hosoya & Tokonami, 1976; Gassmann, 1977). In 
order to solve the structure, this uncertainty must be 
removed by diffraction data and stereochemical infor- 
mation. This information, quantified by expressions 
similar to (4.3), should match the conformation 
entropy. Also, the improvement derived from ad- 
ditional knowledge may be estimated comparing the 
magnitude of combined diffraction data and stereo- 
chemical information [cf. (5.8)], as opposed to that 
provided by diffraction data alone under the as- 
sumption of random atom distribution [el (5.3)]. In 
this connection, the corresponding gain in information, 
expressed to the second order of approximation by 
(5.9), should be non-negative when computed in a real 
case, provided that : (a) a statistically significant 
number of contributing triplet products are included; 
(b) the correct stereochemical data are employed; (c) 
the effect of terms higher than second order in (4.3) 
may be neglected. 

(ii) The information included in a set of structure 
factors phased by multisolution direct methods can be 
quantitated by expressions similar to (4.3) to any 
degree of approximation. Work is in progress to assess 
the possibility of using such a measure as a useful figure 
or merit to select the correct phase set. 

The expansion (4.3) in conjunction with the rule of 
minimum added information provide a basis for a 
systematic and consistent method of dealing with phase 
relationships simultaneously involving triplets, quartets, 
etc. Examples of this procedure are given in § 4. 

After this paper was submitted, it came to our 
attention that others (Britten & Collins, 1982; Narayan 
& Nityananda, 1982) have also recognized the point 
discussed in §§ 2 and 3 of the present work, namely the 
relation between maximum entropy and maximum of 
Karle-Hauptman determinants. 
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who stressed the value of equation (4.3) in predicting 
the phases of large quartet products as described in the 
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APPENDIX 

The relation (2.9) between the [3 matrix and the 
Karle-Hauptman U matrix 

The derivation of (2.9) is similar to that found in 
statistical mechanics when calculating fluctuations of 
thermodynamic quantities (Landau & Lifshitz, 1969). 
For convenience, we will deal here with the P1 case. 

To condense the notation, we shall set: 

Et = Eb, and Ujt = U~j_b, 

(i,j= 1, 2, ..., m). 

We shall assume that the U matrix is non-singular. 
Let us define the random variables X k by the 

relations 

m 

Xk= Y. flpkE$ ( k =  1, 2, ..., m), (A1) 
p = l  

and calculate the averages (ErXk) using the dis- 
tribution function P(E) given by (2.8): 

<ErXk> =C fEr(~,  "kE~) 

x exp (-- ~t,./= 1 fluE~Ej) dinE" (A2) 

To this purpose we shall assume for the moment that 
the averages <Er> are not equal to zero, but equal to 
certain non-null values Ero. Then, by definition, 

(Er> = C f e r exp [-- ~ flu(E~ - E,*) 
t l,J=l 

x (Ej- Ejo) } d m E = Ero. (A3) 
I 

Differentiating (A3) with respect to Eko~" and then 
setting again to zero all averages E,o, E2o, .... Ezo, we 
obtain 6rk for the third member of (A3), while the 
integral becomes equal to the average (A 2): 

~f In P1, Eko and E~o must be considered as independent variables. 
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m 
~. flpk(ErE*) = 6,k. (A4) 

p=l 

Multiplying both members of (A4) by ~ 1  and summing 
over the index k, we obtain 

p=l k=l 

where the Sayre-Hughes equation (2.5) has been used. 
Therefore 

13 = U -1, (A6) 

which is (2.9) for the P1 case. The proof of the relation 
13 = ½LI -~ that holds in the P i  case closely follows the 
same steps as in the P 1 case. 
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Abstract 

A new procedure of phase extension and refinement via 
electron density modification applicable to low-reso- 
lution protein crystal structures is described. The 
Sperm Whale myoglobin structure has been used as a 
working molecule. The procedure of phase extension 
has firstly been tested starting from a set of calculated 
phases at 4 A  resolution; the mean phase error 
obtained for the 9000 strongest reflections from 4 to 
1.8 ,/~ was 39°; subsequently a mean phase error of 
30 ° was spread into the low-resolution set and a phase 
refinement and extension procedure was carried out 
to 1.8/k resolution. The final mean phase errors of 
the 1184 low-resolution model and of the 4816 

0567-7394/83/010068-07501.50 

strongest reflections within 1.8 A were 22 and 50 ° 
respectively. The map calculated with this final set of 
reflections approaches in quality and details the map 
calculated with the 12 658 phases from the refined 
coordinates. 

Introduction 

A crucial step in modern protein crystallography is the 
calculation of a good quality electron density map of 
medium-to-high resolution, suitable for model building 
and/or least-squares refinement. 

Multiple isomorphous replacement methods (MIR) 
very often do not achieve this goal: the crystal- 
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